Diploma Mathematics
formulae(25SC11T)

MATRICES

A matrix is a rectangular
arrangement of numbers in rows and
columns.

Order of a matrix = (Number of rows) X
(Number of columns). (m X n)

Example: A (2x3) matrix has 2 rows and 3
columns.

Example:

12 1 4. .
A—[3 1 5] 1s a 2X3 matrix.

Types of Matrices:

Row Matrix: Only one row.
Example: [1 2 3]

Column Matrix: Only one column.

1
Example: [2]
3

Zero (Null) Matrix: All elements are zero.
0 0]

0 0
Square Matrix: Rows = Columns.

.[1 2
Example: [ 0 4]
Diagonal Matrix: Non-diagonal elements are
1 0 0]

Example: [

0 2 0

0 3 4

Scalar Matrix: Diagonal elements equal.
2 0 0

Example: [0 2 0]
0 0 2

Unit (Identity) Matrix:

Diagonal elements = 1, others = 0.
1 0 0

Example: [0 1 0]
0 0 1

Algebra of Matrices:

Scalar Multiplication: k X A = Each element
multiplied by k.

Example: 2 x B ;}] = [i 2]

zero. Example:

Transpose of a Matrix (AT): Rows become
columns, columns become rows.

2 1
Example: A = 23 4] —AT=(3 2
1 2 5 4 5

Addition & Subtraction (2x2 matrices):

ca=[} 2n=[5 3]imen

6 ﬂ
5 5
A-B=[] ]

Multiplication of 2X2 matrices:

A+B=[

IfA= [; i] B= [g ;],theni
AXB= [(1x3)+(2x5) (1x1)+((2x2)
T 13x3)+(@x5) (Bx1)+(4x2)
_[3+7 1+ﬂ
94+20 3+8
_[10 ﬂ
29 11
DETERMINANTS

A determinant is a scalar value calculated
from a square matrix.
2%2 Determinant:

IfA = [2 2], then:

det(A) = ad — bc (Product of Principle
diagonals) x (Product of secondary
diagonals)

Example:

IfA= [i g] then

2 3
det(A) =A= | 4 c
= (2x5) - (3x4)
=10-12
=-2
Crammer’s Rule
ax + a,y = Ccq
blx + bzy =Cy
Then formula find the x and y
Steps to find x and y

a, a
Step 1:find A = bi bz|
Step 2 : find A, = |:'::1 ZZ|
2 by
a; ¢
Step 3: find A, = |, |
Step 4 : Find x and y by using the formula
_ Ax _ 4y
x == and y = o
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Finding the adjoint of a matrix
For the matrix

2
a=[; &
Step 1 : Interchange the Principle diagonal
elements

A —[4
adjA = [ 1]
Step 2 : change the sign of the secondary
diagonal elements

a4 -2
adJA‘[—3 1 ]
Inverse of a matrix
_adjA

4|

Characteristic Equation
If A is the square matrix, then
Characteristic Equation is defined as
|JA—2AI| =0

-1

CE can be obtained by
22— (trad)A+A=0
Vectors

Vectors representation
a=a,i+a,j+azk = (a,,a,, az)
b = byi + byj + b3k = (by, by, b3)
Modulus of a Vector

|d| = /a§+a§+a§

Unit vector

. a a
T

/a% +a3+ad?
Addition of two vectors

If d = a,i + ayj + az;k = (ay,az, a3)

b = byi + byj + b3k = (by, by, b3) then
d+b=(a,+bya, + by az+bs)
Similarly

d—b=(a, —by,a; — by as — bs)
Position vector of a Point

AB = 0B — 04

BC=0C-0B
AC=0C-04

Dot Product or Scalar Product
Ifa= a1i + azj + agk = (al, az,ag)

b = byi + byj + bsk = (bq, by, b3) then

d.b = a,by + ayb, + azbs

If d.b = 0 then the two vectors are said to be
orthogonal or Perpendicular

Projection of a vector on the other vector

Projection of a vector d@ on b

ab
is defined as = =+
|b|

Projection of a vector b on a

ab
Is defined as = —
|al

Cosine of the angle between the two
vectors defined as

@l |b|

Work done is defined as

w=f.3

Where f is the force and S is the displacement

cosO =

Trigonometric formulae

Radian to degree conversion and vice versa

1 T
xradian = x— degree xdegree = T80 % radians
4 m_ 180° 90° 0yt I

2 > X ——=90" 90" % 180 = 2

T 450 45° r

4 4

i 150 15° T

12 12

57 750 750 5T

12 12

T - Values of standard angles

0° | 30° | 45° | 60° | 90° 180°| 270° | 360°
sin |0 |1 [1 [y3 [1 [0 [a1 [0
2 V2 | 2
cos 1 |v3 |1 |1 0 |1 0 1
2 |V2 |2
tan 0 | 1 |1 V3 | |0 —o0 |0
V3
cot o [4/3 |1 1 10 | 0 0
V3
sec |1 |2 |2 (2 o |1 © 1
V3
cosec | © |2 V2 | 2 |1 | -1 0
V3
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Trigonometric ratios of Allied angles

(without proof)

Trigonometric ratios of allied angles, when the
sum or difference of two angles is either zero or a
multiple of 90°. For example 30° and 60° are
allied angles because their sum is 90°.

The angles —8, 90° + 6, 180° + 6,360° £ 6 etc. are
angles allied to the angle 0, if 8 is measured in
degrees. However, if 6 is measured in radians,

then the angles allied to 0 are —6, g +6,t+0,
2w + 0 etc.

Using trigonometric ratios of allied angles we can
find trigonometric ratios of angles of any

magnitude.
90°
2" Quadrant 1t Quadrant
Sin & Cosec Positive (S) (A) All Positive
90° <0 <180° 0°<9<90°
180% 0°, 360°
180° <6 < 270° 270° < 0 <360°
Tan & Cot Positive (T) (C) Cos & Sec Positive
3 Quadrant 4t Quadrant
270°
Note:

Easy steps to find the allied angle

Step 1(Negativiting)
If it's a t ratio of negative angle change it to
positive by using the following table

sin(—60) = —sin6 cosec(—6) = —cosecH

cos(—8) = +cosb sec(—0) = sech

tan(—0) = —tan® cot(—0) = —cotb

Step 2(Splitting)

Express the given angle as 90 + 8,180 £+ 6,270 +
8 and 360 £ 6,Check which group does it
belongs to (we have divided into two groups 1.
Odd group( 90 £ 6 and 270 £ ) and 2. Even
group (180 + 8,360 + 6)

Step 3(Grouping)

If it
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belongs to even group T function doesn’t changes
If it belongs to odd group T ratio changes (sinf <
cos0, cosecH & secO,tanf < cotl
Step 4(Quadranting)
To assign the sign for the obtained value ,follow
the ASTC rule
Compound Angles Formulae:
Addition Formulae:
1. sin(A + B) = sinA cosB + cosA sinB
2. cos(A + B) = cosAcosB — sinAsinB

tanA+tanB
3. tan(A+B) =_——"—0

Subtraction Formulae:
1. sin(A — B) = sinA cosB — cosA sinB
2. cos(A — B) = cosAcosB + sinAsinB
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3 tan(A_B)zm (a+ib) + (c +id) = (a+c¢) + i(b+d)
Freandtang (@+ib) — (c +id) = (a—c) + i(b—d)

Multiple Angles . ] ,
1 sin2A=2sinAcosA Exarr.lp1.e: (.3 +4i) + (1+2i) = 4+6i
5 inpA < 2tanA Multlp.hcatlon .
1+tan? A (a + ib)(c + id)
3. cos2A = cos*A—sin®A. = (ac — bd) + i(ad + bc)
4. cos2A=2cos*A—1. Example: (2 + 3i)(1 + 4i)
5. cos2A = A = 2 + 8i + 30 + 122
e = —10 + 11
6. tan24 = 1-tan? A Conjugate of a Complex Number
7. sin3A=3sinA—4sin3A if Z= a + ib then its
8. cos3=4cos>A—3cosA. Conjugate: z=a - ib
9. tan3=w Example:If z=3+4i > z=3-4i
1-3tan“ A
Transformation of sum or difference into Modulus and Amplitude
product Modulus: |z| =va? + b2
1. sinC +sinD = 2sin (%) cos (%) Amplitude (Argument): @ = tan™ (|§|)
2 sinC —sinD = 2 cos (CLD) sin (C_TD) B;t changes on differel(ljt quadrants
3. cosC+cosD = 2cos (%) cos (%) (lg,n-l_) QuaI = 0 =a
4. cosC—cosD=—2$in(%)sin(%) (=, +) 1l b=m—a
(=,—) III 0=—(r—a)
Transformation of product into sum or +,5) vV — _a
difference
1. sinAcosB = %[sin(A + B) + sin(A — B)] Example: Forz = 3 + 4i -
2. cosAsinB = %[sin(A + B) — sin(A — B)] |z| = \/321 + 4% = 5,
3. cosAcosB = %[cos(A + B) + cos(A — B)] 6 = tan”(4/3)
4. sinAsinB = %[cos(A —B) —cos(A + B)]
LIMITS
1. Constants and Variables
Complex Numbers Constant: A fixed value (e.g., 5, -2, o).
Definition Variable: A symbol that can take different
A complex number is of the formz = a + values (e.g., X, y).
ib, where: Function: A rule that assigns each input a
a = Real part Re(z) unique output. Example: f(x) = x2 + 1.
b =Imaginary part Im(z) 2. Concept of Limits
i =vV—-1 The limit of f(x) as x approaches a is written
Example: as:
z =3+ 40 - Re(z) = 3,Im(z) = 4 limf(x) =L
Main values of i xX—a
i=vV—-1 This means as x gets closer to a, f(x) gets closer
i2=-1 to L.
i3=—i 3. Limits by Factorization Method
it=1 Steps: Factorize numerator/denominator and
Addition and Subtraction cancel common terms.
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f(=z)

lim
r—a g(a:)
—a)k
TN GO
z—a (z — a)m
Example: llmx_>1(( — 1))
. -D(x+1)
= lim,_, PE
= 2

4. Limits by Rationalization Method
Multiply numerator and denominator by
conjugate to simplify.

i VI (@) — V(@)

Tr—a

Multiply by v/ f(z) + 1/g(z)
Example:
. T —2
lim
4 x—4

Multiply numerator & denominator by (1/z + 2):

r—4
M e 4)(ya+2)
B 1 B 1
CVa+2 4

5. Limits at Infinity

When x — oo,

divide numerator and denominator by highest
power of x.

Rule:

If degree(num) < degree(den) — Limit =0

If degree(num) = degree(den) — Limit = ratio
of coefficients

If degree(num) > degree(den) — Limit = o

Example:

. 3z? +5 3
m - = —
o0 222 — T 2

6.Standard limits

. xt—a -1 . .
a)lim ( ) = na" ",where n is rational
xX-a xX—a

sin@

b)tim( ;

tan
) llm( ) = 1where 0 is in radians
0-0 0

d) lim (=) =1

x—0 X

=1, where @is in radians

Co - ordinate geometry

1. Slope of a straight line m = tanf

Y2=Y1

X2—X1

3. General form of equation of straight line
ax+by+C=0

. .. _ _a
4. Slope of a straight line = ——

Slope of line joining two points m =

X — intercept = —2
Y — intercept = —%
5. Slope intercept form y=mx+C

6. Two point form of a straight line
Y _ Y21
X—X1 = X2—X1
7. Slope point form of a straight line
y—y1=mx —x)
8. Intercept form of the straight line
X
Z+2=1
9. Equation of the straight line which is
parallel to line ax + by + ¢ = 0 and passing
through the point (x; ,y; ) is
axy +by; +K =0
10. Equation of the straight line which is
perpendicular to the line
ax + by + ¢ = 0 and passing through the
point (x; ,y;)isbx; —ay; +k =0
11. Angle between two lines is given by

tanf =

1+mym,
DIFFERENTIAL CALUCLUS

Derivatives of algebraic functions
1. %(x) =1

;—x (x?) = 2x

% (x3) = 3x?

% (x™) = nx""! where n€R

d (1

- (x_”) = _x” — where n€R
d (1 1

=G ==

d 1 1

w(2)=—%

;—x (k) = 0 where k is constant

~(1)=0

Y ® N o ok W D
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d 1
10. a (\/}) = ﬁ

d 1 1
1.2(5) =25

d d
12. < (ku) = k (E)

Derivatives of trigonometric functions

d , .

13. = (sinx) = cosx
d .

14. — (cosx) = —sinx
dx
d _ 2

15. — (tanx) = sec* x
d

16. — (cotx) = —cosec?x
dx

d
17. a(secx) = secx tanx

18. :—x(cosecx) = —cosecx cotx
Derivatives of Inverse trigonometric
functions

d , . _ 1

19. ——(sin Tx) = —

d _ 1

20. —(cos Tx) = -

d _ 1

21. Z—x(tan 1x) = —

_ 1

22. a(cot Tx) =— —

2 (sec™1lx) = —
23. ™ (sec™*x) = P e
1

4 1) = L+
24. — (cosec™x) = p e

Derivatives of exponential functions
i X\ — X
25. ™ (a*) = a* loga
a - x\ _ x
26. — (e¥)=e
Derivatives of logarithmic functions
d 1
27. a(logx) ==
Sum rule
Note: u, v, w are the functions of “x *
d du dv
28.;(11-{-17) —E-Fa
d du dv dw
29.;(U+U+W) —a'l‘a ™
Product rule
d dv du
30. E(UU) =u a-l- Ua
dv

d dw du
31. — (uvw) = uv—+ vw—+ wu —
dx( ) dx + dx + dx

Quotient rule

d (u vul—up?
32. —|—) = ——or

dx \v v2

d(NT) d(Dr)
i(ﬂ) — (Dr dx —Nr dx )
dx \pr/) Dr?

where Nr—- numerator ,Dr - denominator

>

9]

10.

11.

12.
13.

14.
15.
16.
17.
18.
19.

33. Slope of a tangent to the curve y = f(x)
at the point p(x4,y,) is
m=(z)

34. Equation of tangent to the curve
y = f(x) at the point p(x1,y1) is
y —y1 =m(x —x;) where m is slope
of a tangent

35. Slope of a normal to the curve y = f(x)
at the point p(xy, y,) is = —% = — (d_ly)
dx

36. Equation of normal to the curve y =
f (x) at the point p(xy, y1)

y—V 1 =_E(x_x1)

INTEGRAL CALUCLUS

1. [0dx = C
2. J1ldx =x+¢C
3, [ kdx = kx+ C

n+1
[x"dx =—+C;n#1
n+1

1
(n-1)xn-1

fxindx=— +c;n+1

[Zdx =In|x| + C
1 1
fx—zdx——;+C
f%dx=2\/§+C

3
[Vxdx =§x5+ C

lo

[a* dx =a7xa+ C;a>0 a+1
feXdx = e+ C

[ sinxdx = —cosx + C

[ cosxdx = sinx + C

[ tanx dx = logsecx + ¢

[ cotx dx = logcosx + ¢

[ secx dx = log (secx + tanx) + ¢

[ cosecx dx = log (cosecx — cotx) + ¢
[ sec?x dx = tanx + C

[ cosec?x dx = —cotx + C
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20. [ secx (tanx)dx = secx + C 38. The area bounded by the curve y = f(x) ,y-

21. [ cosecx (cotx)dx = —cosecx + C axis between the co-ordinates y =
22. fﬁdx=sin‘1x+C aandy =bis
b b
23. f1:x2 dx=tan"*x +C Area = [ 'xdy = [, g(y)dy
1 4 39. Volume of solid generated about x-axis is:
24, [—m=dx=secTlx+C )
— X dx = cos~! Volume = nf Zdx
25, [—g==dx=cosT'x+C aY
26. [-— 1+1x2 dx=cot'x+C 40. Volume of solid generated about y-axis is:
1 _ _1 b
27. [ ——==dx =cosecT'x+C Volume = ﬂf x2dy
a
28. [ sin (ax + b) dx=—%x+b)+C
29. fcos(ax+b)dx=w+6
ax+b
30. [eaxtb dx=ea + C
n __ (ax+b)nt?
31. [ (ax+b) dx = ot C

32, [—odx =2 4 ¢

ax+b

Sum rule

W

3. JU@) +g()dx = [ f(x)dx + [ g(x)dx

Difference rule

3. J(f () —g())dx = [ f()dx — [ g(x)dx

Product rule

35. fuvdxzufvdx—f(fvdx)j—z dx

where ‘u’ and ‘v’ are the functions of x

Definite integral

36. If [ f(x)dx = @(x) then

b
f £(x)dx = [6(x)](b — a) = B(b) — B(a)

37. The area bounded by the curve y = f(x) ,x-
axis between the co-ordinates x =

aandx =Dbis

Area = fab ydx = fab f(x)dx
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